INTERNAL ASSIGNMENT QUESTIONS M.SC. STATISTICS FINAL ANNUAL EXAMINATIONS (2015-2016)

PROF. G. RAM REDDY CENTRE FOR DISTANCE EDUCATION

(RECOGNISED BY THE DISTANCE EDUCATION BUREAU, UGC, NEW DELHI)

OSMANIA UNIVERSITY

(A University with Potential for Excellence and Re-Accredited by NAAC with "A" Grade)

DIRECTOR Prof. H.VENKATESHWARLU Hyderabad – 7, Telangana State

PROF.G.RAM REDDY CENTRE FOR DISTANCE EDUCATION OSMANIA UNIVERSITY, HYDERABAD – 500 007

Dear Students,

Every student of M.Sc. (Statistics) Final has to write and submit **Assignment** for each paper compulsorily. Each assignment carries **20 marks.** The marks awarded to you will be forwarded to the Controller of Examination, OU for inclusion in the University Examination marks. If you fail to submit Internal Assignments before the stipulated date, the internal marks will not be added to University examination marks under any circumstances. The assignment marks will not be accepted after the stipulated date,

You are required to **pay Rs.300/- fee** towards Internal Assignment marks through DD (in favour of Director, PGRRCDE, OU) and submit the same along with assignment at the concerned counter **on or before 15-07-2016** and obtain proper submission receipt.

ASSIGNMENT WITHOUT THE DD WILL NOT BE ACCEPTED

Assignments on Printed / Photocopy / Typed papers will not be accepted and will not be valued at any cost. Only <u>hand written Assignments</u> will be accepted and valued.

Methodology for writing the Assignments:

- 1. First read the subject matter in the course material that is supplied to you.
- 2. If possible read the subject matter in the books suggested for further reading.
- You are welcome to use the PGRRCDE Library on all working days including Sunday for collecting information on the topic of your assignments.
 (10.30 am to 5.00 pm).
- 4. Give a final reading to the answer you have written and see whether you can delete unimportant or repetitive words.
- 5. The cover page of the each theory assignments must have information as given in FORMAT below.

:

:

FORMAT

- 1. NAME OF THE STUDENT
- 2. ENROLLMENT NUMBER
- 3. M.Sc. (Statistics) Final
- 4. NAME OF THE PAPER
- 5. DATE OF SUBMISSION
- 6. Write the above said details clearly on every subject assignments paper, otherwise your paper will not be valued.
- 7. Tag all the assignments paper wise and submit assignment number wise.
- 8. Submit the assignments on or before **15-07-2016** at the concerned counter at PGRRCDE, OU on any working day and obtain receipt.

Prof.H.VENKATESHWARLU DIRECTOR

M.Sc FINAL YEAR (CDE) ASSIGNMENT SUBJECT : STATISTICS Paper-I : STATISTICAL INFERENCE

I. Give the correct choice of the Answer like 'a' or 'b' etc in the brackets provided against the question. Each question carries half Mark.

1.	The assumptions of most nonparametric test are		
	a) Sample observations are independentb) The variable under study are contb) th (a) and(b)b) none of the above	tinuou ()
2.	If n_a is the sample size for test A and n_b is the sample size for test B, the power efficiency wth respect to test A is	of tes	t B
	a) $(n_{a/}n_{b})*100$ b) $(n_{b/}n_{a})*100$ c) $(n_{a}n_{b})*100$ d) $(n_{a}+n_{b})*100$	()
3.	The test statistic using LRT for testing the equality of two Normal population variances w	hen	means
4	a) t b) F c) χ^2 d)none of the above To test for the randomness of given sample we apply	()
	a) Mann Whitney U test b) Wilcoxon's Signed Rank test c) Sign Test d) Run test	()
5.	In SPRT the sample size is a) fixed b) fixed but small c) fixed but large d) random variable	()
6.	Among the class of unbiased test a test which is UMP is called		
	a) MP b) UMP c) UMPU d) UMPIT	()
7.	To decide about Ho SPRT involves		
	a) One region b) two region c) three regions d) None of the above	()
8.	If the Likelihood Ratio is λ , the variable $-2\log_e \lambda$ is approximately distributed as		
9.	a) t b) F c) χ^2 d) none of the above In SPRT the bounds of two constants A and B are given by	()
	a) $0 < A < B < 1$ b) $0 < B < A < ! c) B < A < 1$ d) none of the above	()
10.	A best confidence Interval will have its width		
	a) larger b) shortest c) length is insignificant d) none of the above	()

11.	Fill in the blanks. Each question carries half Mark.
11.	In SPRT Wald's Fundamental Identity is given by
12.	The Kolmogorov and Smirnov two sample test statistic is given by
13.	The mean of Spearmans ρ under the null hypothesis is
14.	In testing the equality of two Normal populations means with σ^2 unknown the test statistic is given by
15.	Confidence Interval is specified bylimits.
16.	In finding the C.I for large samples, Z is
17.	Homogenity of several populations variances can be tested by
18.	The O.C. function in SPRT is
19.	In SPRT the decision is taken after eachobservation.
20.	If X is Normal (μ , σ^2) when σ^2 is known the 100(1- α)% C.I for μ is
111.	Write short answers to the following. Each question carries one Mark.
111. 21.	Define Randomized test and Non randomized testgive an example
21.22.	Write short answers to the following. Each question carries one Mark. Define Randomized test and Non randomized testgive an example What is power efficiency, explain
21.22.23.	Write short answers to the following. Each question carries one Mark. Define Randomized test and Non randomized testgive an example What is power efficiency, explain Give the definition of one parameter exponential family, give an example, which does not belong to one parameter exponential family
 21. 22. 23. 24. 	 Write short answers to the following. Each question carries one Mark. Define Randomized test and Non randomized testgive an example What is power efficiency, explain Give the definition of one parameter exponential family, give an example, which does not belong to one parameter exponential family What is an unbiased test ,write an example
 21. 22. 23. 24. 25. 	Write short answers to the following. Each question carries one Mark. Define Randomized test and Non randomized testgive an example What is power efficiency, explain Give the definition of one parameter exponential family, give an example, which does not belong to one parameter exponential family What is an unbiased test ,write an example write the concept of Robustness
 21. 22. 23. 24. 25. 26. 	Write short answers to the following. Each question carries one Mark. Define Randomized test and Non randomized testgive an example What is power efficiency, explain Give the definition of one parameter exponential family, give an example, which does not belong to one parameter exponential family What is an unbiased test ,write an example write the concept of Robustness Obtain the Bst Critical Region for the sample with density $f(x,\theta) = \exp(-(x-\theta)), (\theta \le x \le \infty)$ for testing Ho $: \theta = \theta_0 vs.H_1: \theta = \theta_1$
 21. 22. 23. 24. 25. 26. 27. 	Write short answers to the following. Each question carries one Mark. Define Randomized test and Non randomized testgive an example What is power efficiency, explain Give the definition of one parameter exponential family, give an example, which does not belong to one parameter exponential family What is an unbiased test ,write an example write the concept of Robustness Obtain the Bst Critical Region for the sample with density $f(x,\theta) = \exp(-(x-\theta)), (\theta \le x \le \infty)$ for testing Ho $:\theta = \theta_0 vs.H_{1:}\theta = \theta_1$ Find MP test of size α for testing . Ho:X~N(0,1) vs. H ₁ X~C(1,0)
 21. 22. 23. 24. 25. 26. 27. 28 	Write short answers to the following. Each question carries one Mark. Define Randomized test and Non randomized testgive an example What is power efficiency, explain Give the definition of one parameter exponential family, give an example, which does not belong to one parameter exponential family What is an unbiased test ,write an example write the concept of Robustness Obtain the Bst Critical Region for the sample with density $f(x,\theta) = \exp(-(x-\theta)), (\theta \le x \le \infty)$ for testing Ho $:\theta = \theta o vs.H_1.\theta = \theta_1$ Find MP test of size α for testing . Ho:X~N(0,1) vs. H ₁ X~C(1,0) State the asymptotic properties of LRT.
 21. 22. 23. 24. 25. 26. 27. 28 29. 	Write short answers to the following. Each question carries one Mark. Define Randomized test and Non randomized testgive an example What is power efficiency, explain Give the definition of one parameter exponential family, give an example, which does not belong to one parameter exponential family What is an unbiased test ,write an example write the concept of Robustness Obtain the Bst Critical Region for the sample with density $f(x,\theta) = \exp(-(x-\theta)), (\theta \le x \le \infty)$ for testing Ho $:\theta = \theta_0 \text{ vs.}H_1:\theta = \theta_1$ Find MP test of size α for testing . Ho:X~N(0,1) vs. H ₁ X~C(1,0) State the asymptotic properties of LRT. Write the LRT procedure for testing the equality of several Normal populations means

FACULTY OF SCIENCE M.Sc. II Year : MAY 2016 CDE ASSIGNMENT QUESTIONS SUBJECT: STATISTICS PAPER- II: LINEAR MODELS & DESIGN OF EXPERIMENTS N.B.: Answer all questions.

(a) Give the correct choice of the answer like 'a' or 'b' etc in the brackets provided against the question, Each question carries ¹/₂ mark:

1.	ANCOVA is a combination of (a) ANOVA and Regression analysis (b) ANOVA and Time series analysis	()		
	(c) ANOVA and Multivariate analysis (d) None of these				
2.	$V(e_{1,23}) =$	(()	
	(a) σ_1^2 (b) $\sigma_2^2 - \sigma_2^2 \omega$ (c) $\sigma_2^2 \omega$ (d) $\sigma_2^2 + \sigma_2^2 \omega$)	
3	The contrast coefficients for estimating the quadratic effect in a 3^2 factorial experiment are		()	
	(a) -121 (b) $1-21$ (c) $-10-1$ (d) -101		()	
4	$ \begin{array}{c} (a) & -1, 2, 1 \\ \hline (b) & 1, -2, 1 \\ \hline (c) & -1, 0, -1 \\ \hline (c) & -1, 0, -1 \\ \hline (d) & -1, 0, 1 \\ \hline (d)$				
4.	The correlation between two sets of variables is called correlation		(`	
-	(a) multiple (b) partial (c) canonical (d) None 2^2 (c) 4^2		())	
5.	The degrees of freedom for the effect AB in a 3 ² factorial experiment is		()	
	(a) 2 (b) 4 (c) 1 (d) 8		,		
6.	The estimate of an effect in a 2^2 factorial experiment with r-replicates is		()	
	(a) $(\text{contrast})/2^2$.r (b) $(\text{contrast})^2/2^2$.r (c) $(\text{contrast})/2^{2^{-1}}$.r (d) $(\text{contrast})^2/2^{2^{-1}}$.r				
7.	The sum of coefficients in a contrast is		()	
	(a) positive (b) negative (c) zero (d) none				
8.	In a 2^3 factorial design with 3 replicates in 2 blocks each, if the effect AB is confounded	1 in	repli	cate I a	nd II
	effect AC is confounded in replicate III, then the design is		()	
	(a) Partially confounded (b) Completely confounded (c) Balanced partially confound	led	(d)	None	
9	Which of the following is a multiple comparison test	i e a	(4)	1,0110	
).	(a) t-test (b) $I SD$ test (c) $ANOVA$ (d) None		()	
10	In the Analysis of covariance one way the estimate of regression parameter B is		()	
10.	In the Analysis of covariance one way the estimate of regression parameter p is (a) $E = /E$ (b) $E = /E$ (c) $E = /E$ (d) None of the above		()	
	(a) E_{YY}/E_{XX} (b) E_{YY}/E_{XY} (c) E_{XY}/E_{XX} (d) None of the above		C)	
(b)	Fill up the blanks, each question convise 1/ marks				
(0)	Fin up the blanks, each question carries 72 marks:			fac	arial
1.	A factorial experiment with equal number of levels of an factors is called				lonai
r	In the ANCOVA two way electrification if the regression coefficient β is insignific	ont	thar	tha m	odol
2.	reduces to	am	ulei		ouei
3	The one-way classification model is				
л Л	The partial correlation coefficient $r_{inc} =$				
ч.					
5.	The technique of arranging 2 ^k factorial experiment in two blocks is known as			•	
6.	The relation between multiple and partial correlation coefficients is given by				
7.	The linear statistical model for Yourden square design is				
8.	The treatment combinations of 2^3 factorial experiment with fact	ors	Α	, В,	С
	are			-	
9.	Gauss Markov model assumes variance – covariance matrix of error vector of the form				
	·				
10.	In generalized least squares method V (\mathcal{C}) =				

(c) Each question carries 1 mark

Answer the following questions within the space provided

- 1. Explain fisher's least significant difference test.
- 2. Give the normal equation for estimating the regression coefficient β in the analysis of covariance oneway classification model.
- 3. Give the estimates of main effects and interaction effect of a 2² factorial experiment with two replicates.
- 4. Give the layout of 2^4 factorial experiment.
- 5. Explain Balanced partial confounding technique.
- 6. Explain Simple lattice design.
- 7. Define a BIBD.
- 8. Give the differences between BIBD and PBIBD.
- 9. What is fractional replication.
- 10. Define a Split plot design.

Center for Distance Education M.Sc. Final Year: April 2016 INTERNAL ASSESSMENT SUBJECT: STATISTICS (CDE) PAPER : (III)OPERATIONS RESEARCH

Date:-Time: - 1 hr. Timing:-Max. Marks: 20

)

)

)

(

Name of the Candidate: ------ Roll No. ------

N.B.: Answer all questions.

(a) Give the correct choice of the answer like 'a' or 'b' etc in the brackets provided Against the question, each question carries ½ marks: (5 Marks)

- 1) The origin of Operations Research was during()(a) World war I(b) World war II c) French revolution(d) None
- 2) For solving a m*n (m < n) game without a saddle point the method used is :(a) Analytical method
 (b)Graphical Method (c) Simplex Method (d) None of the above
 ()
- 3) When a game is solved by LPP method, the strategies of the second player given by (from the optimum simplex table):(a) Θ rule column (b) ! Z j C_i ! row(c) X_b Column (d) C_bColumn. ()
- 4) When the supply and demand are at the rate of K and R respectively thn EOQ is equal to: (a) Kt
 (b) (K-R)t₁ (c) (K-R)t (d) Kt₁.

5) While writing the dual problem, the subject to condition $x_1 + 3x_2 + 5x_3 \le 3$ can be written as

(a) $x_1 + 3x_2 + 5x_3 = 3$ (b) $x_1 + 3x_2 + 5x_3 \ge 3$ (c) $x_1 + 3x_2 + 5x_3 \le 3$ (d)None

6) If the primal problem has an unbounded solution then the dual problem has

- (a) Unbounded solution (b) feasible solution
- (c) No Feasible solution (d) Optimum solution

8) The probability distribution of departures follows what distribution.

7) In which method, we use the formula $\min\{x_{bi}; x_{bi} < 0\}$ to obtain the leaving variable (a) Dual simplex (b) Duality (c) Simplex (d) Big M ()

a) Truncated Poisson b) Exponential c) Poisson d)Geometric

9) If the arrival rate is 3 per hour and the service rate is 6 per hour then the traffic intensity $\rho = ($)

a)6 b) 3 c) 2 d) 0.5

10)Single item Inventory models occur when an item is ordered only once to satisfy the ()

(a)Supply for the period (b)Supply and Demand for the period (c) Demand for the period (d) None of the above.

(5 Marks)

- 1) The branch and bound graphical approach for solving a Linear IPP cannot be used when a problem Involves more than
- 2) With respect to ABC analysis graph, the categories are decided by the points of-----
- 3) When the production is instantaneous, and demand is uniform at the rate of R also C_1 and C_s are the holding and set up costs for a period t is given by C=-----
- 4) Annual usage value of the ith item is defined as -----
- 5) When a saddle point exists, the value of the game is given by ------
- 6) In a game without a saddle point, the value of the game V is given by-----
- 7) A stage is device in DPP to ----- the decisions.
- 8) In DPP the process is dependent on -----
- 9) In DP Problem the problem under consideration is divided in to -----
- 10) Expand PERT-----

III Each question carries 1 mark Answer the following questions in Short: (10 Marks)

- 1) Define the General Linear Programming Problem
- 2) Define the Primal and Dual Problems.
- 3) Explain the Travelling Salesman Problem.
- 4) Explain the rule of dominance.
- 5) Explain Float

II Fill in the Blanks.

- 6) Compare and contrast PERT and CPM.
- 7) Explain S-s Policy.
- 8) Describe the M/M/1 system
- 9) Define Goal Programming problem with an example.
- 10) Explain the Bellmans Principle of optimality

FACULTY OF SCIENCE M.Sc. (Final) CDE : INTERNAL ASSIGNMENT - 2016 SUBJECT : STATISTICS

Paper-IV : Time Series & Statistical Process and Quality Control Name of the Student : ______ Roll No: I. Give the correct choice of the Answer like 'a' or 'b' etc in the brackets provided against the question. Each question carries half Mark. (5 Marks) 1. Data Collected in chronological order is known as [] a) time series b) statistics c) population d) none of these 2. Which is not a time series?] [a) hourly temperature of a patient b) monthly income of a person c) marks of students in a class d) marks of a student in weekly tests 3. A time series is stationary if ſ 1 b) variance is constant a) mean is constant c) both (a) and (b) d) neither (a) nor (b) 4. The three explicit forms of ARIMA are used in [] c) forecasting a) identification b) estimation d) adequacy 5. Yule-Walker equations are used to find initial estimators in [] b) MA c) ARMA d) ARIMA a) AR 6. Conditional expectation $[Z_{t-j}]$ for j = 0, 1, 2,..., is equal to [] c) Z_t d) Z_i b) Z_{t+i} a) Z_{t-i} 7. The relation between expected value of R and S.D. σ with usual constant factors is [] a) $E[R] = d_1 \sigma$ b) $E[R] = d_2 \sigma$ c) $E[R] = D_1 \sigma$ d) E[R] = $D_2 \sigma$ 8. The graph of the proportion of defectives in the lot against average sample number is called [] b) ASN curve c) Power curve a) OC cure d) none of these 9. OC curve reveals the ability of the sampling plan to distinguish between: [] a) good and bad lots b) good and bad sampling plans c) good and bad product d) all the above 10. The maximum limit of percentage defectives in a finally accepted product is called [] b) LTPD d) None of these a) AOL c) AOQL II Fill in the Blanks. (5 Marks) 1. ACF of lagk of AR(1) model is given by_____

- The stationarity property of AR(p) model is similar to _____ property of MA(q) model.
- 3. ARIMA(p,d,q) is defined by_____
- 4. For testing the adequacy of the model, the Portmanteau test-statistic is given by_____

- 5. If the LSE and MLE both exist for a parameter, then they must be ______
- 6. The Box-Jenkins methodology is used for modeling a ______ time series data.
- 7. The variation due to _______factors is tolerable.
- 8. The control limits delimited by the consumer are known as ______limits.
- 9. Type B OC curve usually evaluate_____
- 10. The expectation of the sample size n in sequential sampling is known as _____

III Each question carries 1 mark Answer the following questions in Short: (10 Marks)

- 1. Derive the invertibility condition of MA(1) model.
- 2. Derive the power spectrum of MA(1) model.
- 3. Derive the variance of AR(1) model
- 4. Find $[Z_{t+l}]$ for $l = 1, 2, \dots$
- 5. Find $[a_{t-i}]$ for $j = 0, 1, 2, \dots$
- 6. Define control chart and discuss various applications of control chart in industry.
- 7. Distinguish between process and product control.
- 8. Explain the basic principles of CUSUM control chart.
- 9. Define Producer's and Consumer's risk.
- 10. Define CSP-1 and CSP-2 plans.